Normal view MARC view ISBD view

# Understanding probability / Henk Tijms.

Material type: TextPublisher: New York : Cambridge University Press, 2012Edition: 3rd ed.Description: x, 562 p. : PDS 34.99 ill. ; 23 cm.Content type: text Media type: unmediated Carrier type: volumeISBN: 9781107658561 (pbk.) :; 110765856X (pbk.) :.DDC classification: 519.2 Online resources: Cover image
Contents:
Machine generated contents note: Preface; Introduction; Part I. Probability in Action: 1. Probability questions; 2. The law of large numbers and simulation; 3. Probabilities in everyday life; 4. Rare events and lotteries; 5. Probability and statistics; 6. Chance trees and Bayes' rule; Part II. Essentials of Probability: 7. Foundations of probability theory; 8. Conditional probability and Bayes; 9. Basic rules for discrete random variables; 10. Continuous random variables; 11. Jointly distributed random variables; 12. Multivariate normal distribution; 13. Conditioning by random variables; 14. Generating functions; 15. Discrete-time Markov chains; 16. Continuous-time Markov chains; Appendix; Counting methods and ex; Recommended reading; Answers to odd-numbered problems; Bibliography; Index.
Summary: "Understanding Probability is a unique and stimulating approach to a first course in probability. The first part of the book demystifies probability and uses many wonderful probability applications from everyday life to help the reader develop a feel for probabilities. The second part, covering a wide range of topics, teaches clearly and simply the basics of probability. This fully revised third edition has been packed with even more exercises and examples, and it includes new sections on Bayesian inference, Markov chain Monte Carlo simulation, hitting probabilities in random walks and Brownian motion, and a new chapter on continuous-time Markov chains with applications. Here you will find all the material taught in an introductory probability course. The first part of the book, with its easy-going style, can be read by anybody with a reasonable background in high school mathematics. The second part of the book requires a basic course in calculus"-- Provided by publisher.
List(s) this item appears in: 2020-02-17
Item type Current location Call number Status Date due Barcode Item holds
Book Chennai Mathematical Institute
General Stacks
519.2 TIJ (Browse shelf) Available 10771
Total holds: 0

Formerly CIP. Uk

Includes bibliographical references (p. 556-557) and index.

Machine generated contents note: Preface; Introduction; Part I. Probability in Action: 1. Probability questions; 2. The law of large numbers and simulation; 3. Probabilities in everyday life; 4. Rare events and lotteries; 5. Probability and statistics; 6. Chance trees and Bayes' rule; Part II. Essentials of Probability: 7. Foundations of probability theory; 8. Conditional probability and Bayes; 9. Basic rules for discrete random variables; 10. Continuous random variables; 11. Jointly distributed random variables; 12. Multivariate normal distribution; 13. Conditioning by random variables; 14. Generating functions; 15. Discrete-time Markov chains; 16. Continuous-time Markov chains; Appendix; Counting methods and ex; Recommended reading; Answers to odd-numbered problems; Bibliography; Index.

"Understanding Probability is a unique and stimulating approach to a first course in probability. The first part of the book demystifies probability and uses many wonderful probability applications from everyday life to help the reader develop a feel for probabilities. The second part, covering a wide range of topics, teaches clearly and simply the basics of probability. This fully revised third edition has been packed with even more exercises and examples, and it includes new sections on Bayesian inference, Markov chain Monte Carlo simulation, hitting probabilities in random walks and Brownian motion, and a new chapter on continuous-time Markov chains with applications. Here you will find all the material taught in an introductory probability course. The first part of the book, with its easy-going style, can be read by anybody with a reasonable background in high school mathematics. The second part of the book requires a basic course in calculus"-- Provided by publisher.