Normal view MARC view ISBD view

Introduction to Soergel Bimodules [electronic resource] / by Ben Elias, Shotaro Makisumi, Ulrich Thiel, Geordie Williamson.

By: Elias, Ben.
Contributor(s): Makisumi, Shotaro [author.] | Thiel, Ulrich [author.] | Williamson, Geordie [author.].
Material type: TextTextSeries: RSME Springer Series: 5.Publisher: Cham : Springer International Publishing : Imprint: Springer, 2020Description: xxv, 588 pages; E 139.99 24 cms.Content type: text Media type: computer Carrier type: online resourceISBN: 9783030488260; 3030488268.Subject(s): Algebra | Group theory | Categories (Mathematics) | Algebra, Homological | Topological groups | Lie groups | Geometry | Geometry, AlgebraicDDC classification: 512
Contents:
Part I The Classical Theory of Soergel Bimodules. - How to Think About Coxeter Groups. - Reflection Groups and Coxeter Groups. - The Hecke Algebra and Kazhdan–Lusztig Polynomials. - Soergel Bimodules. - The 'Classical' Theory of Soergel Bimodules. - Sheaves on Moment Graphs. - Part II Diagrammatic Hecke Category. - How to Draw Monoidal Categories. - Frobenius Extensions and the One-Color Calculus. - The Dihedral Cathedral. - Generators and Relations for Bott–Samelson Bimodules and the Double Leaves Basis. - The Soergel Categorification Theorem. - How to Draw Soergel Bimodules. - Part III Historical Context: Category O and the Kazhdan–Lusztig Conjectures. - Category O and the Kazhdan–Lusztig Conjectures. - Lightning Introduction to Category O. - Soergel's V Functor and the Kazhdan–Lusztig Conjecture. - Lightning Introduction to Perverse Sheaves. - Part IV The Hodge Theory of Soergel Bimodules - Hodge Theory and Lefschetz Linear Algebra. - The Hodge Theory of Soergel Bimodules. - Rouquier Complexes and Homological Algebra. - Proof of the Hard Lefschetz Theorem. - Part V Special Topics. - Connections to Link Invariants. - Cells and Representations of the Hecke Algebra in Type A. - Categorical Diagonalization. - Singular Soergel Bimodules and Their Diagrammatics. - Koszul Duality I. - Koszul Duality II. - The p-Canonical Basis.
List(s) this item appears in: 2021-07-26
Item type Current location Call number Status Date due Barcode Item holds
Book Chennai Mathematical Institute
General Stacks
512.2 ELI (Browse shelf) Checked out 02/11/2022 10870
Total holds: 0

Part I The Classical Theory of Soergel Bimodules. - How to Think About Coxeter Groups. - Reflection Groups and Coxeter Groups. - The Hecke Algebra and Kazhdan–Lusztig Polynomials. - Soergel Bimodules. - The 'Classical' Theory of Soergel Bimodules. - Sheaves on Moment Graphs. - Part II Diagrammatic Hecke Category. - How to Draw Monoidal Categories. - Frobenius Extensions and the One-Color Calculus. - The Dihedral Cathedral. - Generators and Relations for Bott–Samelson Bimodules and the Double Leaves Basis. - The Soergel Categorification Theorem. - How to Draw Soergel Bimodules. - Part III Historical Context: Category O and the Kazhdan–Lusztig Conjectures. - Category O and the Kazhdan–Lusztig Conjectures. - Lightning Introduction to Category O. - Soergel's V Functor and the Kazhdan–Lusztig Conjecture. - Lightning Introduction to Perverse Sheaves. - Part IV The Hodge Theory of Soergel Bimodules - Hodge Theory and Lefschetz Linear Algebra. - The Hodge Theory of Soergel Bimodules. - Rouquier Complexes and Homological Algebra. - Proof of the Hard Lefschetz Theorem. - Part V Special Topics. - Connections to Link Invariants. - Cells and Representations of the Hecke Algebra in Type A. - Categorical Diagonalization. - Singular Soergel Bimodules and Their Diagrammatics. - Koszul Duality I. - Koszul Duality II. - The p-Canonical Basis.