Introduction to Soergel Bimodules [electronic resource] / by Ben Elias, Shotaro Makisumi, Ulrich Thiel, Geordie Williamson.
By: Elias, Ben.
Contributor(s): Makisumi, Shotaro [author.] | Thiel, Ulrich [author.] | Williamson, Geordie [author.].
Material type:
Item type | Current location | Call number | Status | Date due | Barcode | Item holds |
---|---|---|---|---|---|---|
Book | Chennai Mathematical Institute General Stacks | 512.2 ELI (Browse shelf) | Checked out | 01/08/2023 | 10870 |
Part I The Classical Theory of Soergel Bimodules. - How to Think About Coxeter Groups. - Reflection Groups and Coxeter Groups. - The Hecke Algebra and Kazhdan–Lusztig Polynomials. - Soergel Bimodules. - The 'Classical' Theory of Soergel Bimodules. - Sheaves on Moment Graphs. - Part II Diagrammatic Hecke Category. - How to Draw Monoidal Categories. - Frobenius Extensions and the One-Color Calculus. - The Dihedral Cathedral. - Generators and Relations for Bott–Samelson Bimodules and the Double Leaves Basis. - The Soergel Categorification Theorem. - How to Draw Soergel Bimodules. - Part III Historical Context: Category O and the Kazhdan–Lusztig Conjectures. - Category O and the Kazhdan–Lusztig Conjectures. - Lightning Introduction to Category O. - Soergel's V Functor and the Kazhdan–Lusztig Conjecture. - Lightning Introduction to Perverse Sheaves. - Part IV The Hodge Theory of Soergel Bimodules - Hodge Theory and Lefschetz Linear Algebra. - The Hodge Theory of Soergel Bimodules. - Rouquier Complexes and Homological Algebra. - Proof of the Hard Lefschetz Theorem. - Part V Special Topics. - Connections to Link Invariants. - Cells and Representations of the Hecke Algebra in Type A. - Categorical Diagonalization. - Singular Soergel Bimodules and Their Diagrammatics. - Koszul Duality I. - Koszul Duality II. - The p-Canonical Basis.