Galois cohomology and class field theory / David Harari.
By: Harari, David [author.].
Contributor(s): Yafaev, Andrei [translator.].
Material type:
Item type | Current location | Call number | Status | Date due | Barcode | Item holds |
---|---|---|---|---|---|---|
Book | Chennai Mathematical Institute General Stacks | 514.23 HAR (Browse shelf) | Available | 10874 |
Browsing Chennai Mathematical Institute Shelves , Shelving location: General Stacks Close shelf browser
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
||
514.23 CHA Intersection cohomology, simplicial blow-up and rational homotopy / | 514.23 GRO Bivariant periodic cyclic homology / | 514.23 HAR Secondary cohomology operations / | 514.23 HAR Galois cohomology and class field theory / | 514.23 HIG Analytic K-homology / | 514.23 KAC Computational homology / | 514.23 KAS Regular and irregular holonomic D-modules / |
Includes bibliographical references and index.
Part I. Group cohomology and Galois cohomology: generalities. Cohomology of finite groups: basic properties -- Groups modified à la Tate, cohomology of cyclic groups -- P-groups, the Tate-Nakayama theorem -- Cohomology of profinite groups -- Cohomological dimension -- First notions of Galois cohomology -- Part II. Local fields. Basic facts about local fields -- Brauer group of a local field -- Local class field theory: the reciprocity map -- The Tate local duality theorem -- Local class field theory: Lubin-Tate theory -- Part III. Global fields -- Basic facts about global fields -- Cohomology of the idèles: the class field axiom -- Reciprocity law and the Brauer-Hasse-Noether theorem -- The abelianised absolute Galois group of a global field -- Part IV. Duality theorems. Class formations -- Poitou-Tate duality -- Some applications -- Appendices. Some results from homological algebra. Generalities on categories -- Functors -- Abelian categories -- Categories of modules -- Derived functors -- Ext and tor -- Spectral sequences -- A survey of analytic methods -- Dirichlet series -- Dedekind [zeta] function; Dirichlet l-functions -- Complements on the Dirichlet density -- The first inequality -- Class field theory in terms of ideals -- Proof of the Čebotarev theorem.
Description based on online resource; title from resource home page (ProQuest Ebook Central, viewed October 2, 2020).